0%

保号性证明导数的零点定理

证明以下两个命题:

(1) 设f(x)f(x)在[a,b]上连续f(a)=f(b)=0f(a)=f(b)=0, 且f+(a)f(b)>0f^{'}_{+}(a)\cdot f^{'}_{-}(b)>0, 证明:f(x)f(x)在(a,b)上至少存在一个零点;

(2) 函数f(x)f(x)满足f(0)=0f(0)=0. 证明:f(x)f(x)x=0x=0处可导\Leftrightarrow存在g(x)g(x)(在0处连续), 使得f(x)=xg(x)f(x)=xg(x),且此时f(0)=g(0)f^{'}(0)=g(0).

(1) f+(a)f(b)>0f+(a)f(b)f^{'}_{+}(a)\cdot f^{'}_{-}(b)>0\Longrightarrow f^{'}_{+}(a)与 f^{'}_{-}(b)同正或同负。
不妨设$ f^{’}{+}(a)>0, f^{’}{-}(b)>0$(同负同理)

根据导数定义与连续函数极限的保号性:
f+(a)>0limxa+f(x)xa>0(用到f(a)=0)f^{'}_{+}(a)>0\Longrightarrow \lim\limits_{x\rightarrow a^+}\dfrac{f(x)}{x-a}>0(用到f(a)=0)ε,x1U+(a,ε),f(x1)>0(用到xa>0)\Longrightarrow \exists \varepsilon,x_1\in U_+(a,\varepsilon),f(x_1)>0(用到x-a>0)

f(b)>0limxbf(x)xb>0(用到f(b)=0)f^{'}_{-}(b)>0\Longrightarrow \lim\limits_{x\rightarrow b^-}\dfrac{f(x)}{x-b}>0(用到f(b)=0)ε,x2U(b,ε),f(x2)<0(用到xb<0)\Longrightarrow \exists \varepsilon,x_2\in U_-(b,\varepsilon),f(x_2)<0(用到x-b<0)

根据零点定理,f(x)f(x)在(a,b)上至少存在一个零点.

(2) 必要性. 取g(x)={f(x)x,x0f(0),x=0 g\left( x \right) =\left\{ \begin{array}{l} \dfrac{f\left( x \right)}{x},x\neq 0\\ f'(0),x=0\\ \end{array} \right.

显然,f(x)=xg(x)f(x)=xg(x),且此时f(0)=limx0f(x)x=g(0)(g0处连续)f^{'}(0)=\lim\limits_{x\rightarrow 0}\dfrac{f\left( x \right)}{x}=g(0)(g在0处连续).

充分性. f(0)=limx0f(x)x=limx0xg(x)x=g(0)f^{'}(0)=\lim\limits_{x\rightarrow 0}\dfrac{f\left( x \right)}{x}=\lim\limits_{x\rightarrow 0}\dfrac{xg\left( x \right)}{x}=g(0), 所以,f(x)f(x)x=0x=0处可导.