0%

微分中值定理:还原法构造函数

  • 微分中值定理:还原法构造函数

(2022·上海大学·8) 设 f(x)f(x)R\mathbb{R} 上二阶可导, 且 f(0)=0f(0)=0, 证明: 存在 ξ(π2,π2)\xi \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right), 使得

f(ξ)=3f(ξ)tanξ+2f(ξ)f^{\prime \prime}(\xi)=3 f^{\prime}(\xi) \tan \xi+2 f(\xi)

g(x)=f(x)cos2xg(x)=f(x) \cos ^{2} x(如何构造?往下看)
g(x)=cosx(f(x)cosx2f(x)sinx)\Rightarrow g^{\prime}(x)=\cos x\left(f^{\prime}(x) \cos x-2 f(x) \sin x\right). 由于 f(0)=0f(0)=0,故 g(0)=0g(0)=0g(π2)=0,g(π2)=0g\left(\frac{\pi}{2}\right)=0, g\left(-\frac{\pi}{2}\right)=0. 利用罗尔中值定理,有

ξ1(π2,0),ξ2(0,π2)\exists \xi_{1} \in\left(-\frac{\pi}{2}, 0\right), \xi_{2} \in\left(0, \frac{\pi}{2}\right)

使得 g(ξ1)=g(ξ2)=0g^{\prime}\left(\xi_{1}\right)=g^{\prime}\left(\xi_{2}\right)=0.

由于cosξ10\cos \xi_{1} \neq 0cosξ20\cos \xi_{2} \neq 0, 故令h(x)=f(x)cosx2f(x)sinx\left.h(x)=f^{\prime}(x) \cos x-2 f(x) \sin x\right.

h(ξ1)=0h\left(\xi_{1}\right)=0h(ξ2)=0h\left(\xi_{2}\right)=0. 而

h(x)=f(x)cosx3f(x)sinx2f(x)cosx.h^{\prime}(x)=f^{\prime \prime}(x) \cos x-3 f^{\prime}(x) \sin x-2 f(x)\cos x.

利用罗尔定理,存在 ξ(ξ1,ξ2)\xi \in\left(\xi_{1}, \xi_{2}\right), 使得 f(ξ)=3f(ξ)tan3+2f(ξ)f^{\prime \prime}(\xi)=3 f^{\prime}(\xi) \tan 3+2 f(\xi) .

还原法构造函数
step1: 先将ξ\xi换成xx

f(x)=3f(x)tanx+2f(x)f^{\prime \prime}(x)=3 f^{\prime}(x) \tan x+2 f(x)

step2: 整理如下:

f(x)cosx=3f(x)sinx+2f(x)cosx(f(x)cosxf(x)sinx)2(f(x)sinxf(x)cosx)=0(f(x)cosx)2(f(x)sinx)=0(f(x)cosx2f(x)sinx)=0\begin{aligned} &f^{\prime \prime}(x) \cos x=3 f^{\prime}(x) \sin x+2 f(x) \cos x\\ &\left(f^{\prime}(x) \cos x-f^{\prime}(x) \sin x\right)-2\left(f^{\prime}(x) \sin x-f(x) \cos x\right)=0\\ &\left(f^{\prime}(x) \cos x\right)^{\prime}-2(f(x) \sin x)^{\prime}=0\\ &\Rightarrow\left(f^{\prime}(x) \cos x-2 f(x) \sin x\right)^{\prime}=0 \end{aligned}

step3: 根据 f(x)cosx2f(x)sinx=0f^{\prime}(x) \cos x-2 f(x) \sin x=0用还原法构造:整理为 (lnf(x))(lng(x))=0(\ln f(x))^{\prime}-\left(\ln g(x)\right)^{\prime}=0 形式.

f(x)f(x)2tanx=0(lnf(x))2(lncosx)=0(lnf(x))(lncos2x)=0g(x)=f(x)cos2x.\begin{aligned} &\dfrac{f^{\prime}(x) }{f(x)}-2 \tan x=0\\ &\Rightarrow(\ln f(x))^{\prime}-2(\ln |\cos x|)^{\prime}=0\\ &(\ln f(x))^{\prime}-\left(\ln \cos ^{2} x\right)^{\prime}=0\\ &\Rightarrow g(x)=f(x) \cos ^{2} x. \end{aligned}