0%

严格对角占优矩阵的性质

  • 严格对角占优矩阵的性质

A=(a11a12a1na21a22a2nan1an2ann)A=\left( \begin{matrix} a_{11}& a_{12}& \cdots& a_{1n}\\ a_{21}& a_{22}& \cdots& a_{2n}\\ \vdots& \vdots& & \vdots\\ a_{n1}& a_{n2}& \cdots& a_{nn}\\ \end{matrix} \right)

为一实数域上的矩阵,证明:
(1) 如果aii>jiaij,i=1,2,,n|a_{ii}|>\sum\limits_{j\neq i}|a_{ij}|,i=1,2,\cdots,n,(严格对角占优:即每一行元素绝对值中对角线元素大于其它元素之和), 那么A0|A|\neq 0
(2)如果aii>jiaij,i=1,2,,na_{ii}>\sum\limits_{j\neq i}|a_{ij}|,i=1,2,\cdots,n,(即每一行元素中对角线元素大于其它元素绝对值之和), 那么A>0|A|> 0

(1) 只要证明以 A\boldsymbol{A} 为系数矩阵的齐次线性方程组只用有零解. 这等价于对任一不全为零的实数组 c1,c2,,cnc_{1}, c_{2}, \cdots, c_{n}, 证明必有某 ii 使 ai1c1+ai2c2++aincn0a_{i 1} c_{1}+a_{i 2} c_{2}+\cdots+a_{i n} c_{n} \neq 0. (否则c1,c2,,cnc_{1}, c_{2}, \cdots, c_{n}为解,矛盾)

由于 c1,c2,,cnc_{1}, c_{2}, \cdots, c_{n} 不全为零, 必有某 ci0c_{i} \neq 0,且 cicj,j=1,2,,n\left|c_{i}\right| \geqslant\left|c_{j}\right|, j=1,2, \cdots, n. 于是

j=1naijcjaiicij=1jinaijcjaiicijinaijci=ci(aiijiaij)>0\begin{aligned} \left|\sum_{j=1}^{n} a_{i j} c_{j}\right| & \geqslant\left|a_{i i} c_{i}\right|-\sum_{\substack{j=1 \\ j \neq i}}^{n}\left|a_{i j} c_{j}\right|\\ &\left.\geqslant\left|a_{i i}\right|\left|c_{i}\right|-\sum_{j \neq i}^{n}\left|a_{i j}\right|\left|c_{i}\right|\right. \\ &=\left|c_{i}\right|\left(\left|a_{i i}\right|-\sum_{j \neq i}\left|a_{i j}\right|\right)>0 \end{aligned}

j=1naijcj0\sum\limits_{j=1}^{n} a_{i j} c_{j} \neq 0, 即以 A\boldsymbol{A} 为系数矩阵的齐次方程组只有零解. 所以 A0|\boldsymbol{A}| \neq 0.

(2)应用数学归纳法.

n=1,A=a11>0n=1,|\boldsymbol{A}|=a_{11}>0.

设命题对 n1n-1 已成立. 取 A|\boldsymbol{A}| 的第一行的 nn 个代数余子式 A11,A12,,A1nA_{11}, A_{12}, \cdots, A_{1 n}. 易得

a11A11+a12A12++a1nA1n=A.ai1A11+ai2A12++ainA1n=0,i=2,3,,n.\begin{aligned} a_{11} A_{11}+a_{12} A_{12}+\cdots+a_{1 n} A_{1 n} &=|\boldsymbol{A}| . \\ a_{i 1} A_{11}+a_{i 2} A_{12}+\cdots+a_{i n} A_{1 n} &=0, \quad i=2,3, \cdots, n . \end{aligned}

由 (1) 知 A0|\boldsymbol{A}| \neq 0, 故 A11,A12,,A1nA_{11}, A_{12}, \cdots, A_{1 n} 不全为零. 我们欲证 A11,A12,,A1nA_{11}, A_{12}, \cdots, A_{1 n} 中绝对值最大的为 A11A_{11}, 用反证法. 设有 i1,A1iA1j,j=1,2,,ni \neq 1,\left|A_{1 i}\right| \geqslant\left|A_{1 j}\right|, j=1,2, \cdots, n, 这时必有 A1i>0\left|A_{1 i}\right|>0, 则

ai1A11++aiiA1i++ainA1naiiA1ijiaijA1jaiiA1ijiaijA1i=A1i(aiijiaij)>0.\begin{aligned} &\left|a_{i 1} A_{11}+\cdots+a_{i i} A_{1 i}+\cdots+a_{i n} A_{1 n}\right| \\ \geqslant &\left|a_{i i}\right|\left|A_{1 i}\right|-\sum_{j \neq i}\left|a_{i j}\right|\left|A_{1 j}\right| \\ \geqslant &\left|a_{i i}\right|\left|A_{1 i}\right|-\sum_{j \neq i}\left|a_{i j}\right|\left|A_{1 i}\right| \\ =&\left|A_{1 i}\right|\left(a_{i i}-\sum_{j \neq i}\left|a_{i j}\right|\right)>0 . \end{aligned}

i1i \neq 1, 前面式子等于零, 矛盾.故 A11A1j,j=1,2,,n\left|A_{11}\right| \geqslant\left|A_{1 j}\right|, j=1,2, \cdots, n.

又由归纳假设有 A11>0A_{11}>0, 故 a11A11>0a_{11} A_{11}>0. 于是

A=a11A11+i=2na1iA1ia11A11i=2na1iA1i(a11i=2na1i)A11>0.\begin{aligned} |\boldsymbol{A}| &=a_{11} A_{11}+\sum_{i=2}^{n} a_{1 i} A_{1 i} \geqslant a_{11} A_{11}-\sum_{i=2}^{n}\left|a_{1 i}\right|\left|A_{1 i}\right| \\ & \geqslant\left(a_{11}-\sum_{i=2}^{n}\left|a_{1 i}\right|\right) A_{11}>0 . \end{aligned}

结论得证.