0%

关于矩阵的几个常用的结论

  • 关于矩阵的几个常用的结论

证明以下结论:

(1) 秩(A+B)(A+B)\leq(A)+(A)+(B)(B);

(2) A,BA,B均为n×nn\times n矩阵,如果AB=OAB=O, 那么

(A)+(A)+(B)n(B)\leq n;

(3) AAn×nn\times n矩阵, 证明:A=An1|A^*|=|A|^{n-1},这里n2n\geq 2;

(4) AAn×nn\times n矩阵, 这里n2n\geq 2, 证明:

 秩 (A)={n, 秩 (A)=n,1, 秩 (A)=n1,0, 秩 (A)<n1.\text { 秩 }\left(A^{*}\right)= \begin{cases}n, & \text { 秩 }(\boldsymbol{A})=n, \\ 1, & \text { 秩 }(\boldsymbol{A})=n-1, \\ 0, & \text { 秩 }(\boldsymbol{A})<n-1 .\end{cases}

(5) A,BA,B分别为n×mn\times mm×nm\times n矩阵, 证明:

(i)EmBAEn=EnAB=EmBA(i)\left| \begin{matrix} E_m& B\\ A & E_n\\ \end{matrix} \right|=|E_n-AB|=|E_m-BA|

(ii) λEnAB=λnmλEmBA|\lambda E_n-AB|=\lambda^{n-m}|\lambda E_m-BA|.

思路 (1) 将A,BA,B写成列向量,根据线性表出秩的关系证明;

(2) 将BB写成列向量,根据线性方程组解的关系证明;

(3) 利用AA=AEAA^*=|A|E证明;

(4) 根据(3)结论证明;

(5) 利用分块矩阵性质证明.

证:

(1)A=(A1A2An),B=(B1B2Bn),Ai,Bj(i,j=1,2,,n)\boldsymbol{A}=\left(\boldsymbol{A}_{1} \boldsymbol{A}_{2} \cdots \boldsymbol{A}_{n}\right), \boldsymbol{B}=\left(\boldsymbol{B}_{1} \boldsymbol{B}_{2} \cdots \boldsymbol{B}_{n}\right), \boldsymbol{A}_{i}, \boldsymbol{B}_{j}(i, j=1,2, \cdots, n) 都是列向量. A+B=(A1+B1A2+B2An+Bn)A+B=\left(A_{1}+B_{1} A_{2}+B_{2} \cdots A_{n}+B_{n}\right), 它的每个列向量都可由列向量组 A1,A2,,An,B1A_{1}, A_{2}, \cdots, A_{n}, B_{1}, B2,,BnB_{2}, \cdots, B_{n} 线性表出. 又设 Ai1,Ai2,,AirA_{i_{1}}, A_{i_{2}}, \cdots, A_{i_{r}}Bj1,Bj2,,BjsB_{j_{1}}, B_{j_{2}}, \cdots, B_{j_{s}} 分别是 A1,A2,,AnA_{1}, A_{2}, \cdots, A_{n}B1B_{1}, B2,,BnB_{2}, \cdots, B_{n} 的极大线性无关组, 则 A1+B1,A2+B2,,An+BnA_{1}+B_{1}, A_{2}+B_{2}, \cdots, A_{n}+B_{n} 都可由向量组 Ai1,Ai2,A_{i_{1}}, A_{i_{2}}, \cdots, Air,Bj1,Bj2,,BjsA_{i_{r}}, B_{j_{1}}, B_{j_{2}}, \cdots, B_{j_{s}} 线性表出.故

 秩 (A+B)= 秩 {A1+B1,A2+B2,,An+Bn} 秩 {Ai1,Ai2,,Air,Bj1,Bj2,,Bjs}r+s,\begin{aligned} \text { 秩 }(\boldsymbol{A}+\boldsymbol{B}) &=\text { 秩 }\left\{\boldsymbol{A}_{1}+\boldsymbol{B}_{1}, \boldsymbol{A}_{2}+\boldsymbol{B}_{2}, \cdots, \boldsymbol{A}_{n}+\boldsymbol{B}_{n}\right\} \\ & \leqslant \text { 秩 }\left\{\boldsymbol{A}_{i_{1}}, \boldsymbol{A}_{i_{2}}, \cdots, \boldsymbol{A}_{i_{r}}, \boldsymbol{B}_{j_{1}}, \boldsymbol{B}_{j_{2}}, \cdots, \boldsymbol{B}_{j_{s}}\right\} \leqslant r+s, \end{aligned}

即秩 (A+B)(A+B) \leqslant(A)+(\boldsymbol{A})+(B)(\boldsymbol{B}).

(2)AB=O,BA B=O, B 的各个列向量都是齐次方程组 AX=0A X=0 的解,故能由它的基础解 系线性表出. 于是秩 (B)(\boldsymbol{B}) \leqslant 基础解系的秩 =n=n-(A)(\boldsymbol{A}), 即有秩 (A)+(\boldsymbol{A})+(B)n(\boldsymbol{B}) \leqslant n.

(3)AA=AEA A^{*}=|A| E,

AA=An|A|\cdot\left|A^{*}\right|=|A|^{n}

A0|A| \neq 0, 则

A=AnA=An1\left|\boldsymbol{A}^{*}\right|=\frac{|\boldsymbol{A}|^{n}}{|\boldsymbol{A}|}=|\boldsymbol{A}|^{n-1} \text {. }

A=0|\boldsymbol{A}|=0, 则 AA=O\boldsymbol{A A}{ }^{*}=\boldsymbol{O}.

a.A=OA=O, 则 AA 的各子式为零, 于是 A=OA^{*}=O, 这时当然有

A=0=A=An1|\boldsymbol{A}|^{*}=0=|\boldsymbol{A}|=|\boldsymbol{A}|^{n-1} \text {. }

b.AO\boldsymbol{A} \neq \boldsymbol{O}, 即有秩 (A)>0(\boldsymbol{A})>0. 由

AA=O\boldsymbol{A \boldsymbol { A } ^ { * }}=\boldsymbol{O}

及秩 (A)+(\boldsymbol{A})+(A)n\left(\boldsymbol{A}^{*}\right) \leqslant n. 于是可知秩 (A)n1\left(A^{*}\right) \leqslant n-1, 所以 A=0\left|A^{*}\right|=0. 与 1) 一样有 A=An1\left|A^{*}\right|=|A|^{n-1}.

(4) 当秩 (A)=n(\boldsymbol{A})=nA0,A=An10|\boldsymbol{A}| \neq 0,\left|\boldsymbol{A}^{*}\right|=|\boldsymbol{A}|^{n-1} \neq 0. 故秩 (A)=n\left(\boldsymbol{A}^{*}\right)=n.

当秩 (A)=n1(\boldsymbol{A})=n-1 时, A\boldsymbol{A} 至少有一个 n1n-1 级子式 0\neq 0, 即 AO\boldsymbol{A}^{*} \neq \boldsymbol{O}, 秩 (A)1\left(\boldsymbol{A}^{*}\right) \geqslant 1.

又这时秩 (A)=n1,A=0(\boldsymbol{A})=n-1,|\boldsymbol{A}|=0, 故 AA=AE=O\boldsymbol{A \boldsymbol { A } ^ { * }}=|\boldsymbol{A}| \boldsymbol{E}=\boldsymbol{O}.

再由 秩 (A)+(\boldsymbol{A})+(A)n\left(\boldsymbol{A}^{*}\right) \leqslant n, 故 秩 (A)n(n1)=1\left(A^{*}\right) \leqslant n-(n-1)=1, 所以秩 (A)=1\left(\boldsymbol{A}^{*}\right)=1.

当秩 (A)<n1(\boldsymbol{A})<n-1 时, A\boldsymbol{A} 的任意 n1n-1 行皆线性相关, 故它的任意 n1n-1 级子式都为零. 所以 A=OA^{*}=O, 因而秩 (A)=0\left(A^{*}\right)=0.

(5) (i) 由

(EmOAEn)(EmBAEn)=(EmBOEnAB),\left(\begin{array}{cc} E_{m} & O \\ -A & E_{n} \end{array}\right)\left(\begin{array}{cc} E_{m} & B \\ A & E_{n} \end{array}\right)=\left(\begin{array}{cc} E_{m} & B \\ O & E_{n}-A \boldsymbol{B} \end{array}\right),

EnAB=EmBOEnAB=EmOAEnEmBAEn=EmBAEn.\left|E_{n}-A B\right|=\left|\begin{array}{cc} E_{m} & B \\ O & E_{n}-A B \end{array}\right|=\left|\begin{array}{cc} E_{m} & O \\ -A & E_{n} \end{array}\right|\left|\begin{array}{cc} E_{m} & B \\ A & E_{n} \end{array}\right|=\left|\begin{array}{cc} E_{m} & B \\ A & E_{n} \end{array}\right| .

又由

(EmBAEn)(EmOAEn)=(EmBABOEn),\left(\begin{array}{cc} E_{m} & B \\ A & E_{n} \end{array}\right)\left(\begin{array}{cc} E_{m} & O \\ -A & E_{n} \end{array}\right)=\left(\begin{array}{cc} E_{m}-B A & B \\ O & E_{n} \end{array}\right),

EmBA=EmBABOEn=EmBAEnEmOAEn=EmBAEn.\left|E_{m}-B A\right|=\left|\begin{array}{cc} E_{m}-B A & B \\ O & E_{n} \end{array}\right|=\left|\begin{array}{cc} E_{m} & B \\ A & E_{n} \end{array}\right|\left|\begin{array}{cc} E_{m} & O \\ -A & E_{n} \end{array}\right|=\left|\begin{array}{cc} E_{m} & B \\ A & E_{n} \end{array}\right| .

此题得证.

(ii)由 (i)有

EnA(Bλ)=Em(Bλ)A\left|\boldsymbol{E}_{n}-\boldsymbol{A}\left(\frac{\boldsymbol{B}}{\lambda}\right)\right|=\left|\boldsymbol{E}_{m}-\left(\frac{\boldsymbol{B}}{\lambda}\right) \boldsymbol{A}\right|

于是

1λnλEnAB=1λmλEmBA\frac{1}{\lambda^{n}}\left|\lambda \boldsymbol{E}_{n}-\boldsymbol{A} \boldsymbol{B}\right|=\frac{1}{\lambda^{m}}\left|\lambda E_{m}-B A\right| \text {, }

λEnAB=λnmλEmBA.\left|\lambda \boldsymbol{E}_{n}-\boldsymbol{A B}\right|=\lambda^{n-m}\left|\lambda E_{m}-B A\right| .