0%

多项式在实数域/复数域上的因式分解及应用

  • 多项式在实数域/复数域上的因式分解及应用

(1)将多项式xn1x^n-1在实数域上因式分解;

(2)如果(x2+x+1)f1(x3)+xf2(x3)(x^2+x+1)|f_1(x^3)+xf_2(x^3), 证明(x1)f1(x),(x1)f2(x)(x-1)|f_1(x), (x-1)|f_2(x).

思路: (1) 先在复数域上分解,然后将其中的多个因式(一般两个)乘开,变成实多项式。

(2)根据x31=(x1)(x2+x+1)x^3-1=(x-1)(x^2+x+1), 只需证:f1(1)=0,f2(1)=0f_1(1)=0,f_2(1)=0.

证: (1) 先在复数域上分解:

xn1=(x1)(xε)(xε2)(xεn1)x^n-1=(x-1)(x-\varepsilon)(x-\varepsilon^2)\cdots(x-\varepsilon^{n-1}),

其中,ε=cos2πn+isin2πn\varepsilon=\cos\dfrac{2\pi}{n}+i\sin\dfrac{2\pi}{n}.

容易验证:εn=1,εk+εnk=2cos2kπn\varepsilon^n=1, \varepsilon^k+\varepsilon^{n-k}=2\cos\dfrac{2k\pi}{n}

然后,发现

(xε)(xεn1)=x2(ε+εn1)x+1=x22cos2πnx+1(x-\varepsilon)(x-\varepsilon^{n-1})=x^2-(\varepsilon+\varepsilon^{n-1})x+1=x^2-2\cos\dfrac{2\pi}{n}x+1

为实多项式。

所以,在复数域的展开为:

  • nn为奇数时,xn1=(x1)(x22cos2πnx+1)(x22cos(n1)πnx+1)x^n-1=(x-1)(x^2-2\cos\dfrac{2\pi}{n}x+1)\cdots(x^2-2\cos\dfrac{(n-1)\pi}{n}x+1)
  • n为偶数时,xn1=(x1)(x+1)(x22cos2πnx+1)(x22cos(n2)πnx+1)x^n-1=(x-1)(x+1)(x^2-2\cos\dfrac{2\pi}{n}x+1)\cdots(x^2-2\cos\dfrac{(n-2)\pi}{n}x+1)

(2) x31=(x1)(x2+x+1)=(x1)(xε)(xε2)x^3-1=(x-1)(x^2+x+1)=(x-1)(x-\varepsilon)(x-\varepsilon^2)

这里,ε=cos2π3+isin2π3,ε3=1\varepsilon=\cos\dfrac{2\pi}{3}+i\sin\dfrac{2\pi}{3}, \varepsilon^3=1

(x2+x+1)f1(x3)+xf2(x3)(x^2+x+1)|f_1(x^3)+xf_2(x^3)

f1(x3)+xf2(x3)=q(x)(x2+x+1)=q(x)(xε)(xε2)\Longrightarrow f_1(x^3)+xf_2(x^3)=q(x)(x^2+x+1)=q(x)(x-\varepsilon)(x-\varepsilon^2)

f1(1)+εf2(1)=0,\Longrightarrow f_1(1)+\varepsilon f_2(1)=0, f1(1)+ε2f2(1)=0f_1(1)+\varepsilon^2f_2(1)=0

f1(1)=0,f2(1)=0.\Longrightarrow f_1(1)=0,f_2(1)=0.