0%

定积分的性质证明不等式:Holder不等式,Schwarz不等式,Minkowski不等式

  • 定积分的性质

(1) 叙述并证明Holder不等式;

(2) 叙述并证明Schwarz不等式;

(3) 叙述并证明Minkowski不等式.

(1)

 (Ho¨lder 不等式) 设 f(x),g(x) 在 [a,b] 上连续, p,q 为满足 1p+1q=1 的 \text { (Hölder 不等式) 设 } f(x), g(x) \text { 在 }[a, b] \text { 上连续, } p, q \text { 为满足 } \frac{1}{p}+\frac{1}{q}=1 \text { 的 }

正数, 证明

abf(x)g(x)dx(abf(x)p dx)1p(abg(x)q dx)1q\int_{a}^{b}|f(x) g(x)| \mathrm{d} x \leqslant\left(\int_{a}^{b}|f(x)|^{p} \mathrm{~d} x\right) ^{\frac{1}{p}}\left(\int_{a}^{b}|g(x)|^{q} \mathrm{~d} x\right)^{\frac{1}{q}} \text {. }

a. 当 f(x)0f(x) \equiv 0g(x)0g(x) \equiv 0 时,上式显然成立.
b. 否则的话, 令

φ(x)=f(x)(abf(x)p dx)1p,ψ(x)=g(x)(abg(x)q dx)1q,x[a,b]\varphi(x)=\dfrac{|f(x)|}{\left(\int_{a}^{b}|f(x)|^{p} \mathrm{~d} x\right)^{\frac{1}{p}}}, \psi(x)=\dfrac{|g(x)|}{\left(\int_{a}^{b}|g(x)|^{q} \mathrm{~d} x\right)^{\frac{1}{q}}}, x \in[a, b]

( abf(x)dx\int_{a}^{b}|f(x)|^{\prime} \mathrm{d} xabg(x)dx\int_{a}^{b}|g(x)|^{\prime} \mathrm{d} x 均大于零), 得到

φ(x)ψ(x)1pφ(x)p+1qψ(x)q,\varphi(x) \psi(x) \leqslant \frac{1}{p} \varphi(x)^{p}+\frac{1}{q} \psi(x)^{q},

f(x)g(x)(abf(x)p dx)1p(abg(x)q dx)1qf(x)ppabf(x)pdx+g(x)qqabg(x)qdx,x[a,b].\frac{|f(x) g(x)|}{\left(\int_{a}^{b}|f(x)|^{p} \mathrm{~d} x\right)^{\frac{1}{p}}\left(\int_{a}^{b}|g(x)|^{q} \mathrm{~d} x\right)^{\frac{1}{q}}} \leqslant\frac{|f(x)|^{p}}{p\int_{a}^{b}|f(x)|^{p}\mathrm{d}x}+\frac{|g(x)|^{q}}{q\int_{a}^{b}|g(x)|^{q}\mathrm{d}x},x\in[a,b].

对上式两边在 [a,b][a, b] 上求积分, 利用定积分的性质得

1(abf(x)p dx)1p(abg(x)q dx)1qabf(x)g(x)dxabf(x)p dxpabf(x)p dx+abg(x)q dxqabf(x)q dx=1p+1q=1.\begin{aligned} & \frac{1}{\left(\int_{a}^{b}|f(x)|^{p} \mathrm{~d} x\right)^{\frac{1}{p}}\left(\int_{a}^{b}|g(x)|^{q} \mathrm{~d} x\right)^{\frac{1}{q}}} \int_{a}^{b}|f(x) g(x)| \mathrm{d} x \\ \leqslant & \frac{\int_{a}^{b}|f(x)|^{p} \mathrm{~d} x}{p \int_{a}^{b}|f(x)|^{p} \mathrm{~d} x}+\frac{\int_{a}^{b}|g(x)|^{q} \mathrm{~d} x}{q \int_{a}^{b}|f(x)|^{q} \mathrm{~d} x}=\frac{1}{p}+\frac{1}{q}=1 . \end{aligned}

在不等式两边同乘以 (abf(x)pdx)1p(abg(x)q dx)1q\left(\int_{a}^{b}|f(x)|^{p} \mathrm{d} x\right)^{\frac{1}{p}}\left(\int_{a}^{b}|g(x)|^{q} \mathrm{~d} x\right)^{\frac{1}{q}}, 即得

abf(x)g(x)dx(abf(x)p dx)1p(abg(x)q dx)1q.\int_{a}^{b}|f(x) g(x)| \mathrm{d} x \leqslant\left(\int_{a}^{b}|f(x)|^{p} \mathrm{~d} x\right)^{\frac{1}{p}}\left(\int_{a}^{b}|g(x)|^{q} \mathrm{~d} x\right)^{\frac{1}{q}} .

(2) (Schwarz 不等式) [abf(x)g(x)dx]2abf2(x)dxabg2(x)dx\left[\int_{a}^{b} f(x) g(x) \mathrm{d} x\right]^{2} \leqslant \int_{a}^{b} f^{2}(x) \mathrm{d} x \cdot \int_{a}^{b} g^{2}(x) \mathrm{d} x

由于对任意的 tt, 积分 ab[tf(x)+g(x)]2 dx0\int_{a}^{b}[t f(x)+g(x)]^{2} \mathrm{~d} x \geqslant 0, 即

t2abf2(x)dx+2tabf(x)g(x)dx+abg2(x)dx0,t^{2} \int_{a}^{b} f^{2}(x) \mathrm{d} x+2 t \int_{a}^{b} f(x) g(x) \mathrm{d} x+\int_{a}^{b} g^{2}(x) \mathrm{d} x \geqslant 0,

所以其判别式恒为非正的, 也就是成立

[abf(x)g(x)dx]2abf2(x)dxabg2(x)dx.\left[\int_{a}^{b} f(x) g(x) \mathrm{d} x\right]^{2} \leqslant \int_{a}^{b} f^{2}(x) \mathrm{d} x \cdot \int_{a}^{b} g^{2}(x) \mathrm{d} x .

(3) (Minkowski 不等式)

{ab[f(x)+g(x)]2 dx}12{abf2(x)dx}12+{abg2(x)dx}12.\left\{\int_{a}^{b}[f(x)+g(x)]^{2} \mathrm{~d} x\right\}^{\frac{1}{2}} \leqslant\left\{\int_{a}^{b} f^{2}(x) \mathrm{d} x\right\}^{\frac{1}{2}}+\left\{\int_{a}^{b} g^{2}(x) \mathrm{d} x\right\}^{\frac{1}{2}} .

 由 abf(x)g(x)dx{abf2(x)dx}12{abg2(x)dx}12, 得到 abf2(x)dx+2abf(x)g(x)dx+abg2(x)dxabf2(x)dx+2{abf2(x)dx}12{abg2(x)dx}12+abg2(x)dx,\begin{aligned} &\text { 由 } \int_{a}^{b} f(x) g(x) \mathrm{d} x \leqslant\left\{\int_{a}^{b} f^{2}(x) \mathrm{d} x\right\}^{\frac{1}{2}}\left\{\int_{a}^{b} g^{2}(x) \mathrm{d} x\right\}^{\frac{1}{2}} \text {, 得到 } \\ &\int_{a}^{b} f^{2}(x) \mathrm{d} x+2 \int_{a}^{b} f(x) g(x) \mathrm{d} x+\int_{a}^{b} g^{2}(x) \mathrm{d} x \\ &\leqslant \int_{a}^{b} f^{2}(x) \mathrm{d} x+2\left\{\int_{a}^{b} f^{2}(x) \mathrm{d} x\right\}^{\frac{1}{2}}\left\{\int_{a}^{b} g^{2}(x) \mathrm{d} x\right\}^{\frac{1}{2}}+\int_{a}^{b} g^{2}(x) \mathrm{d} x, \end{aligned}

ab[f(x)+g(x)]2 dx[{abf2(x)dx}12+{abg2(x)dx}12]2,\int_{a}^{b}[f(x)+g(x)]^{2} \mathrm{~d} x \leqslant\left[\left\{\int_{a}^{b} f^{2}(x) \mathrm{d} x\right\}^{\frac{1}{2}}+\left\{\int_{a}^{b} g^{2}(x) \mathrm{d} x\right\}^{\frac{1}{2}}\right]^{2},

两边开平方,即得到

{ab[f(x)+g(x)]2 dx}12{abf2(x)dx}12+{abg2(x)dx}12\left\{\int_{a}^{b}[f(x)+g(x)]^{2} \mathrm{~d} x\right\}^{\frac{1}{2}} \leqslant\left\{\int_{a}^{b} f^{2}(x) \mathrm{d} x\right\}^{\frac{1}{2}}+\left\{\int_{a}^{b} g^{2}(x) \mathrm{d} x\right\}^{\frac{1}{2}} \text {. }